A new candidate for the regulation of erythropoiesis Insulin-like growth factor I

Armin Kurtz, Wolfgang Jelkmann and Christian Bauer

Institut für Physiologie, Universität Regensburg, Postfach 397, 8400 Regensburg, FRG

Received 24 September 1982

The effect of pure human insulin-like growth factor I (IGF I) on the colony formation of late stage erythroid precursor cells (CFU-e) from fetal mouse liver and adult bone marrow was studied in a serum-free culture system. We found that IGF I in physiological concentrations stimulated erythroid colony formation. The combined effect of IGF I and erythropoietin was smaller than the sum of their single effects. The number of colonies induced by IGF I was linearly dependent on the number of plated cells. Our results indicate that IGF I is the first clearly defined mitogen that stimulates the late stages of erythroid differentiation independently of erythropoietin.

Insulin-like growth factor Somatomedin Erythroid differentiation
Erythroid precursor cell Cell structure

1. INTRODUCTION

Insulin is capable of stimulating the growth of late erythroid precursor cells (CFU-e) [1]. This growth-enhancing effect of insulin did not require the presence of the glycoprotein hormone erythropoietin (Ep) that is thought to be indispensable for the proliferation of CFU-e [2]. The stimulating effect of insulin on erythroid colony formation could only be observed at supraphysiological concentrations of the hormone, the concentration for the half-maximal effect being 5 orders of magnitude higher than the physiological insulin concentration. Such a mitogenic effect of high concentrations of insulin has been demonstrated for various other cell types in vitro [3]. In fibroblast cultures [4] the growth enhancing capacity of insulin is mediated by receptors which bind insulin with a low affinity but have a high affinity for the insulinlike growth factors (IGF I and IGF II) [5]. To test the hypothesis that the effect of insulin on colony formation of CFU-e is due to a direct effect of IGF we have examined the influence of IGF I on the growth of CFU-e in a serum-free culture system.

We found that IGF I in the physiological concentration range greatly enhances erythroid colony formation in fetal mouse liver and adult-mouse bone marrow independently of Ep.

2. MATERIALS AND METHODS

2.1. Erythroid colony assay

Effects of IGF I and Ep were studied using the in vitro bioassay for Ep. Liver cells were obtained from 13-day fetal NMRI mice (Dr Ivanovas, Kisslegg). Bone marrow cell suspensions were prepared from femurs of adult female mice. The test procedure was essentially that in [6] except that fetal bovine serum was replaced by a serum-free incubation medium according to [7]. Cells were cultured in 4-well dishes (Greiner/FRG). Dishes were incubated for 48 h at 37°C in a humidified atmosphere containing 20% O2, 5% CO2, balance N_2 , using O_2 - and CO_2 -controlled incubators (Heraeus, Hanau). Cultures were evaluated as in [8]. Each experiment represents the mean of 3 replicate wells. Repetition of experiments was done with different cell preparations.

2.2. Erythropoietin

Human urinary Ep, supplied by the National Institutes of Health (MD), was standardized against the International Reference Preparation B in the exhypoxic polycythemic mouse assay for Ep.

2.3. IGF I

A stock solution ($10 \mu g/ml$) of pure human IGF I in Iscoves modified Dulbecco medium (Gibco) containing 1% deionized albumin was stored at -60°C until use. IGF I was kindly provided by Professor E.R. Froesch (Zürich).

3. RESULTS AND DISCUSSION

Fig. 1 shows the effect of Ep and IGF I on the growth of 2 day erythroid colonies (CFU-e) from

fetal mouse liver and adult bone marrow in a serum-free culture medium. The molar concentrations of Ep and IGF I were calculated using M_r 40000 and spec. act. 70000 U/mg for Ep [9] and $M_{\rm r}$ 7500 for IGF I [10]. It can be seen that IGF I stimulated the growth of erythroid colonies in a dose-dependent manner. The percent increase of the number of colonies upon raising the molar concentration of IGF I was similar for CFU-e from both adult and fetal erythroid tissue. This parallels the similar responsiveness of CFU-e towards Ep from adult and fetal erythroid tissue in a serumfree culture system (fig. 1, left curve). The doseresponse curve of Ep on CFU-e colony formation in adult bone marrow fits very well with the curve in [7] obtained with the same culture system.

The dose-response curve for IGF I was only half

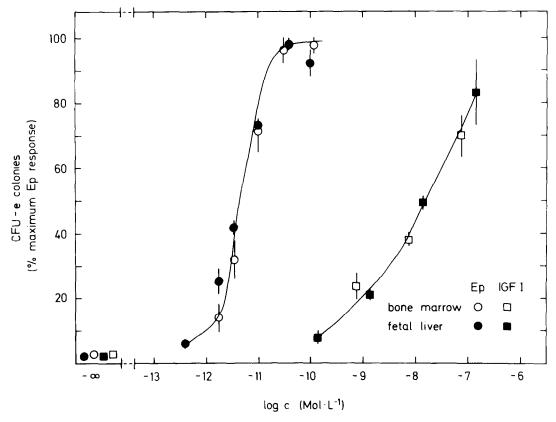


Fig. 1. Formation of erythroid colonies from fetal mouse liver cells and adult bone marrow cells grown for 2 days in vitro in the presence of Ep or IGF I. The concentrations of the hormones are given on a molar basis. The number of CFU-e colonies is expressed as a percentage of the maximum response to Ep $(2530 \pm 120 \text{ colonies/}10^5 \text{ cells,})$ mean \pm SEM of 13 obs. for fetal liver cells and $203 \pm 60 \text{ colonies/}10^5 \text{ cells,}$ mean \pm SEM of 3 obs. for adult bone marrow cells) in the same experiment.

as steep as for Ep (fig. 1). This could be due to the formation of IGF-dimers at higher concentrations of the mitogen, which in analogy to the dimer formation of insulin [11], might lead to a diminished biological activity.

A comparison of the molar concentrations of Ep and IGF I which give rise to 50% of the maximum number of colonies, shows that the potency of Ep is by 4 orders of magnitude greater than that of IGF I. However, in doing such comparisons it should be noted that the plasma concentrations of Ep and IGF I under normal conditions are about 10⁻¹¹ M [12] and 10⁻⁷ M [13], respectively. Therefore, both substances are likely to be about equally effective in stimulating late erythroid differentiation under physiological conditions.

Furthermore, the number of erythroid colonies stimulated by IGF I was linearly dependent on the number of plated cells. This finding supports the idea that there is a direct effect of IGF I on CFU-e which is not mediated by co-cultivated cells.

The combined effect of Ep an IGF I was smaller than the sum of the single effects of Ep and IGF I (table 1). In the presence of saturating concentrations of Ep, addition of IGF I did not lead to a further increase in the number of colonies. This indicates that both hormones act on the same cell population. IGF I is strongly related to the family of somatomedins [14], a group of mitogens which

Table 1

Effect of Ep on the growth of erythroid colonies from fetal mouse livers in the presence of IGF I

IGF I	0		100 ng/ml (1.3×10 ⁻⁸ M)
0	2	24 ± 3	52 ± 2
	(13)	(5)	(5)
5 mU/ml	25 ± 4	42 ± 1	not
$(1.8 \times 10^{-12} \text{ M})$	(13)	(4)	determined
10 mU/ml	42 ± 2	not	73 ± 4
$(3.6 \times 10^{-12} \text{ M})$	(13)	determined	(4)
120 mU/ml	98 ± 2	not	105 ± 4
$(4.3 \times 10^{-11} \text{ M})$	(13)	determined	(4)

The number of crythroid colonies is expressed as a percentage of the maximum response to Ep $(2530 \pm 120 \text{ colonies}/10^5 \text{ cells}$, mean \pm SEM, n = 13) in the same experiment. Numbers in parenthesis indicate the number of experiments

are known to mediate the effects of the growth hormone (GH) [15,16]. In view of these connections the effect of IGF I on colony formation from CFU-e could explain various reports demonstrating a stimulation of erythropoiesis by GH [17,18].

It has become increasingly apparent that the late stages (CFU-e) of erythroid differentiation are enhanced by growth factors other than Ep. The sources of these factors comprise medium from lectin-stimulated mouse spleen cells [19,20] and human mononuclear cells [21] as well as from unstimulated human malignant cell lines [22,23]. Since all these growth factors have been operationally defined as anything that enhances the formation of CFU-e colonies in culture, it is not clear whether the CFU-e promoting activities from various sources are different in nature or not. IGF I on the other hand, is a mitogen of which the chemical structure has been established in great detail [10]. Therefore, IGF I is the first clearly defined mitogen that stimulates the late stages of erythroid differentiation independently of Ep.

ACKNOWLEDGEMENTS

Our sincere thanks are to Professor E.R. Froesch for supplying us with IGF I. This work was financially supported by the Sonderforschungsbereich 43 of the Deutsche Forschungsgemeinschaft.

REFERENCES

- [1] Kurtz, A., Jelkmann, W. and Bauer, C. (1982) Brit. J. Haematol. in press.
- [2] Metcalf, D. (1977) Rec. Results Can. Res. 61, 161.
- [3] Straus, D.S. (1981) Life Sci. 29, 2131-2139.
- [4] Morell, B. and Froesch, E.R. (1973) Eur. J. Clin. Invest. 3, 119-123.
- [5] Zapf, J., Rinderknecht, E., Humbel, R.E. and Froesch, E.R. (1978) Metabolism 27, 1803-1828.
- [6] Rich, I.N. and Kubanek, B. (1979) J. Embryol. Exp. Morph. 50, 57-74.
- [7] Iscove, N.N., Guilbert, L.J. and Weyman, C. (1980) Exp. Cell. Res. 126, 121-126.
- [8] Iscove, N.N., Sieber, F. and Winterhalter, K.H. (1974) J. Cell. Physiol. 83, 309-320.
- [9] Miyake, T., Kung, D. and Goldwasser, E. (1977) J. Biol. Chem. 252, 5558-5564.
- [10] Rinderknecht, E. and Humbel, R.E. (1978) J. Biol. Chem. 253, 2769-2776.

- [11] Schlüter, K., Peterson, K.-G., Schüttler, A., Brandenburg, D. and Korp, L. (1980) in: Insulin: Chemistry, Structure and Function of Insulin and Related Hormones (Brandenburg, D. and Wollmer, A. eds) pp. 433-438, de Gruyter, Berlin.
- [12] Zaroulis, C.G., Hoffman, B.J. and Kourides, I.A. (1981) Am. J. Hematol. 11, 85-92.
- [13] Zapf, J., Walter, H. and Froesch, E.R. (1981) J. Clin. Invest. 68, 1321-1330.
- [14] Van Wyk, J.J., Svoboda, M.E. and Underwood, L.E. (1980) J. Clin. Endocrinol. Metab. 50, 206-208.
- [15] Daughaday, W.H., Hall, K., Raben, M.S., Salman, W.D., Jun., Van den Brande, J.L. and Van Wyk, J.J. (1972) Nature 235, 107.
- [16] Shields, R. (1977) Nature 267, 308-310.

- [17] Fruhman, G.J., Gerstner, K. and Gordon, A.S. (1954) Proc. Soc. Exp. Biol. Med. 85, 93-96.
- [18] Golde, D.W., Bersch, N. and Li, C.H. (1977) Science 196, 1112-1113.
- [19] Johnson, G.R. and Metcalf, D. (1977) Proc. Natl. Acad. Sci. USA 74, 3879-3882.
- [20] Fagg, B. (1981) Nature 289, 184-186.
- [21] Nishihira, H. and Kigasawa, H. (1981) Brit. J. Haematol. 49, 563-566.
- [22] Golde, D.W., Bersch, N., Quan, S.G. and Lusis, A.L. (1980) Proc. Natl. Acad. Sci. USA 77, 593-596.
- [23] Ascensao, J.L., Kay, N.E., Earenfight-Engler, T. and Zanjani, E.D. (1981) in: Hemoglobins in Development and Differentiation pp. 103-109, Alan R. Liss, New York.